BLOOD SPOT METAL ASSESSMENT USING X-RAY FLUORESCENCE

AARON SPECHT

OUTLINE

- What is XRF?
- Blood spots with XRF
- Lead, Cadmium, Mercury, and Arsenic in Blood Spots

WHAT CAN WE MEASURE?

STANDARD INSTRUMENTATION FOR METALS

Inductively Coupled Plasma Mass Spectrometry

- Twice the cost of typical XRF systems (excluding maintenance and supplies...)
- Requires sample acid digestion
- Highly trained lab technicians
- Parts per trillion level detection limits

- Cheaper to purchase and maintain
- Non-destructive analysis
- Easy to use with less risk of critical failure

BENCHTOP XRF A NEW PARADIGM

X-ray Fluorescence

- We can measure almost anything with this at PPB level detection limits
- Let's look at blood spots

OVERCOMING PROBLEMS WITH BLOOD SPOTS

- The drying process (ring size, volume of blood, hematocrit) can have the potential for influencing measurements of punches or small samples.
- With the XRF we can sample from the full spot size (removes most of these issues)

Specht et al. 2021, Environmental Science and BLOOD SPOTS CALIBRA ON AND LIMITATIONS

Table 1.	Sample	Number of	Concentratio	Coefficient	MDL
Distribution of		Measurements	n (ug/dL)	of Variation	(ug/dL)
repeated	Blood Spot Standard	22	10	0.05	1.0
30-minute measurements	Blood Spot 1 (150 uL)	20	5.5	0.09	1.0
of blood spots.	Blood Spot 2 (300uL)	30	7.1	0.23	3.2

VOLUME AND PROCEDURAL DEPENDENCIES

Proc Test					
Sample	Number of Samples	ICP-M S (ug/dL)	Mean (ug/dL)	Coefficient of Variation	Standard Deviation (ug/dL)
Blood 1 (300 uL)	4	7.1	5.1	0.27	1.36
Blood 2 (150 uL)	6	8.8	9.1	0.08	0.74

The deviation is less than or the same as our recorded detection limit. This means we have eliminated most error derived from the preparation of the sample.

DOES IT WORK IN PRACTICE?

Venous blood from Boston Children's Hospital

NIST 955c Capillary Blood

- Validated known metal concentrations
 - Arsenic from 0-80 ug/L
 - Mercury from 0-35 ug/L
 - •Lead from 0-45 ug/dL
 - •Cadmium from 0-10 ug/L

DOES IT WORK IN PRACTICE?

Boston Children's Hospital Blood Samples Specht et al. 2021, Environmental Science and Technology

NIST Known Blood Hg (ug/L)

NIST Known Blood Pb (ug/L)

NIST Known Blood Cd (ug/L)

CONCLUSIONS

- Dried blood spots are able to be measured for Pb, Hg, As, and Cd using x-ray fluorescence
- Method can be used to get more elements and metals that should also be relevant to health
- Some metals have better detection capabilities than others in DBS

Collaborators on this

Marc Weisskopf, Maitreyi **Moz**amdar, Jessica Faul, Kelly Bakulski, Everyone in HRS!

Health and Retirement Study (SUBK00018927) National Institute for Occupational Safety and Health (NIOSH) K01 OH011648

Facility Access Funds (FAF) from the Harvard-NIEHS Center for Environmental Health

development