### The Genetic Lottery for Premature Mortality in Mid-Century Wisconsin

Using the Phenotype Differences Model to Identify Genetic Effects with Incomplete Sibling Data

Sam Trejo

Assistant Professor Department of Sociology Office of Population Research





### Klint Kanopka Ph.D. Candidate, Stanford University



## Introduction

- GWAS have mapped the genetic correlates of wide-range of complex traits
  - Results are used to generate PGI, which aim to index individual
- But do GWAS discoveries (and resulting PGI) capture the causal effects of genes?
  - Threat of environmental confounding from population stratification and dynastic effects
    - Young et al. 2019, Science
    - Okbay et al. 2022, Nature Genetics
    - Howe et al. 2022, Nature Genetics



## Making Causal Inferences

- How do we identify causal genetic effects?
- Same as in non-genetic analyses
  - Leverage only random genetic variation
- With DNA, we have the ultimate "natural" experiment
  - Conditional on their parents' genes, a child's genes are randomly assigned via genetic recombination



# **Existing Methods**

- Sibling methods
  - Family fixed effects difference out all shared family-level variation, indirectly conditioning on parental genotype
  - Requires siblings pairs with 2 genotypes & 2 phenotypes
- Trio methods
  - Explicitly conditions on parental genotype
  - Requires mother, father, & child trios with all 3 genotypes & the child's phenotype
    - Possible with only 2 genotypes child's phenotype using phased data



### Limitations

- There is a dearth of the sort of genotyped family data required by FE and Trio Methods
  - UKB has 500k singletons but only has 16k sibling pairs & 10k parent-child pairs



## Moving Forward

- How do we increase the sample sizes available for robust familial analyses?
- Introducing the Phenotype Differences Model!
- Requires only one sibling's genotype, alongside two siblings' phenotypes



## **Potential Applications**

- Surveying individuals on the phenotypes of their siblings (e.g. the UKB is expanding)
- Merging phenotypic data of siblings from population registries, health records, etc.
- Using siblings pairs with missing data in existing longitudinal studies (e.g. in the WLS)



## **Potential Applications**

 PD can both increase statistical power (by increasing sample size) and improve external validity (increasing representativeness of samples)



First Differences

$$y_{1j} - y_{2j} = \hat{\beta}^{\mathsf{FE}}(g_{1j} - g_{2j}) + \hat{\varepsilon}^*_{ij}$$



**First Differences** 

$$y_{1j} - y_{2j} = \hat{\beta}^{\mathsf{FE}}(g_{1j} - g_{2j}) + \hat{\varepsilon}^*_{ij}$$

Phenotype Differences (General)

$$y_{1j} - y_{2j} = \hat{\alpha} + \hat{\beta}^{\mathsf{PD}} \left( g_{1j} (1 - \rho^{g_{1j}, g_{2j}}) \right) + \hat{\varepsilon}_{ij}$$



First Differences

$$y_{1j} - y_{2j} = \hat{\beta}^{\mathsf{FE}}(g_{1j} - g_{2j}) + \hat{\varepsilon}^*_{ij}$$

Phenotype Differences (General)

$$y_{1j} - y_{2j} = \hat{\alpha} + \hat{\beta}^{\mathsf{PD}}\left(g_{1j}(1 - \rho^{g_{1j},g_{2j}})\right) + \hat{\varepsilon}_{ij}$$

Phenotype Differences ( $\rho^{g_{1j},g_{2j}}=.5$ )

$$y_{1j} - y_{2j} = \hat{\alpha} + \hat{\beta}^{\mathsf{PD}} \frac{g_{1j}}{2} + \hat{\varepsilon}_{ij}$$



## Comparative Efficiency

- When genetic effects are small (i.e. GWAS), Phenotype Differences provides the same precision as Fixed Effects *per genotype* 
  - Though, you typically have half as many genotypes per family
- As genetic effects get larger, Phenotype Differences becomes comparatively less efficient than Fixed Effects per genotype
  - For current EA PGS, comparative precision drops from 1 to about 0.9

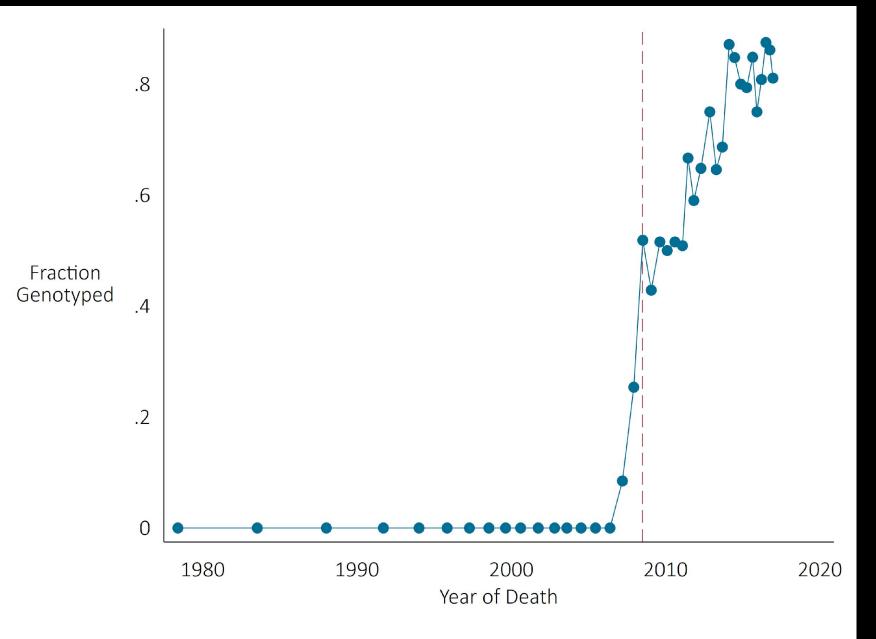


## Key Assumption

 Equal genotype/PGI standard deviation of genetically observed and unobserved sibling

$$var(g_{1j})^{rac{1}{2}} = var(g_{2j})^{rac{1}{2}}$$




### Not a problem for Phenotype Differences

- Asymmetric classical measurement error
  - E.g., respondents reporting their siblings' phenotype less accurately than their own
- Asymmetric measurement bias
  - E.g., respondents systematically under- or over-estimating their siblings' phenotype
- Linear selection into genotyping
  - E.g., genetic differences between individuals additively increasing or decreasingly likelihood of being the genotyped (versus ungenotyped) sibling











#### Table 2: Wisconsin Longitudal Study Summary Statistics

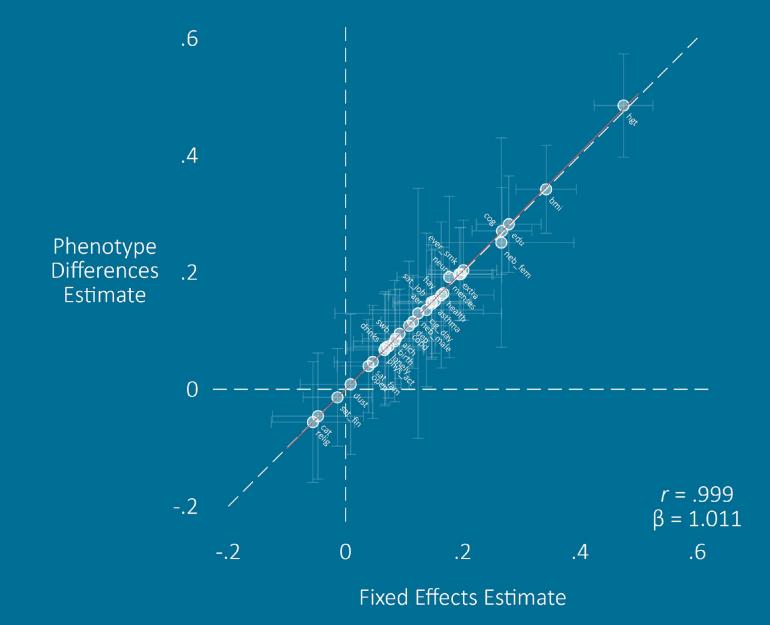
#### Panel A. Two Genotypes Sample.

|                    | Graduate |      |      | Not Graduate |      |      |
|--------------------|----------|------|------|--------------|------|------|
|                    | Mean     | SD   | Ν    | Mean         | SD   | N    |
| Female             | 0.52     | 0.50 | 2088 | 0.53         | 0.50 | 2088 |
| Birth Year         | 1939.41  | 0.46 | 2088 | 1941.18      | 6.82 | 2088 |
| Deceased by 2018   | 0.12     | 0.32 | 2088 | 0.11         | 0.32 | 2088 |
| Deceased by Age 75 | 0.06     | 0.24 | 2088 | 0.07         | 0.25 | 1346 |
| Lifespan*          | 78.52    | 1.86 | 2088 | 76.78        | 6.62 | 2088 |

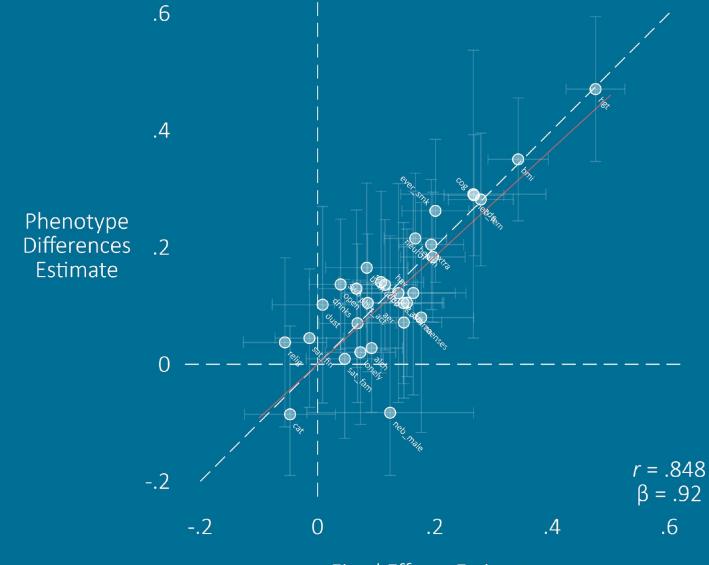


#### Table 2: Wisconsin Longitudal Study Summary Statistics

#### Panel A. Two Genotypes Sample.

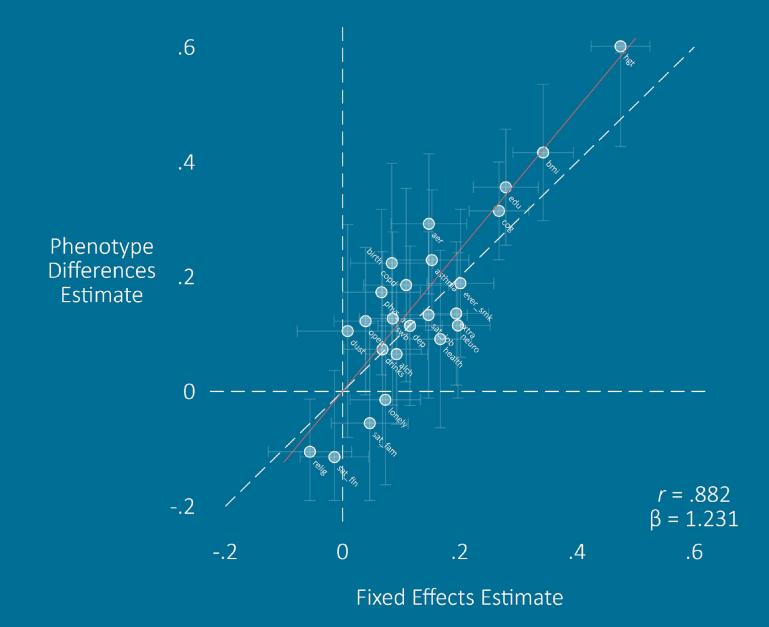

|                    | Graduate |      |      | Not Graduate |      |      |
|--------------------|----------|------|------|--------------|------|------|
|                    | Mean     | SD   | N    | Mean         | SD   | N    |
| Female             | 0.52     | 0.50 | 2088 | 0.53         | 0.50 | 2088 |
| Birth Year         | 1939.41  | 0.46 | 2088 | 1941.18      | 6.82 | 2088 |
| Deceased by 2018   | 0.12     | 0.32 | 2088 | 0.11         | 0.32 | 2088 |
| Deceased by Age 75 | 0.06     | 0.24 | 2088 | 0.07         | 0.25 | 1346 |
| Lifespan*          | 78.52    | 1.86 | 2088 | 76.78        | 6.62 | 2088 |

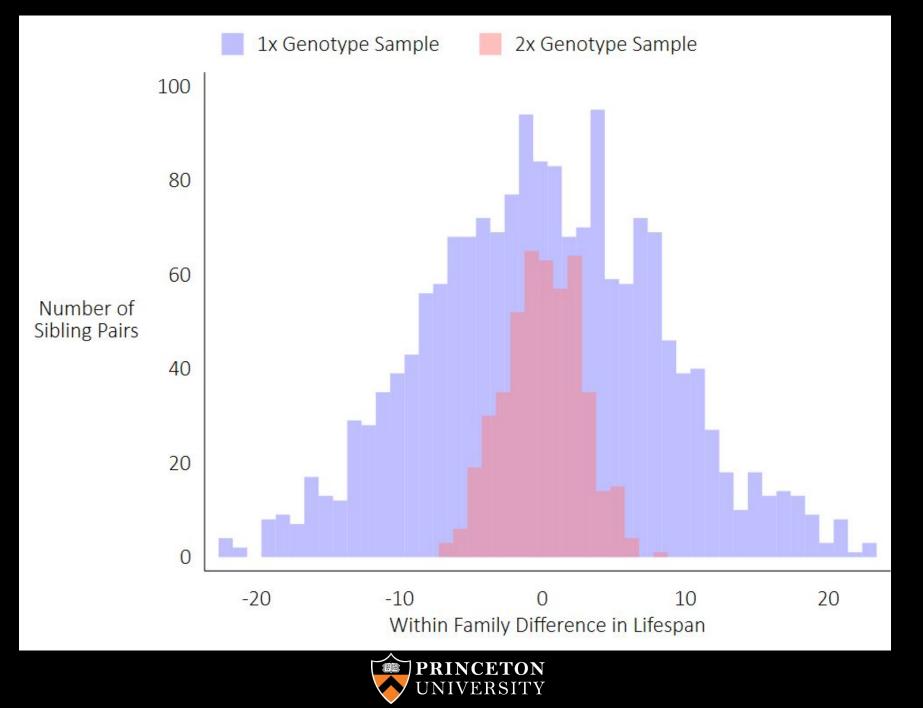
#### Panel B. One Genotype Sample.

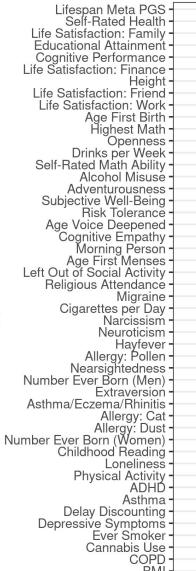

|                    | Genotyped |      |      | Not Genotyped |       |      |
|--------------------|-----------|------|------|---------------|-------|------|
|                    | Mean      | SD   | N    | Mean          | SD    | N    |
| Graduate           | 0.73      | 0.44 | 3548 | 0.27          | 0.44  | 3548 |
| Female             | 0.51      | 0.50 | 3548 | 0.48          | 0.50  | 3548 |
| Birth Year         | 1939.84   | 3.49 | 3548 | 1941.15       | 7.25  | 3548 |
| Deceased by 2018   | 0.12      | 0.33 | 3548 | 0.41          | 0.49  | 3548 |
| Deceased by Age 75 | 0.07      | 0.25 | 3218 | 0.46          | 0.50  | 2686 |
| Lifespan*          | 78.03     | 3.78 | 3548 | 70.54         | 10.32 | 3548 |

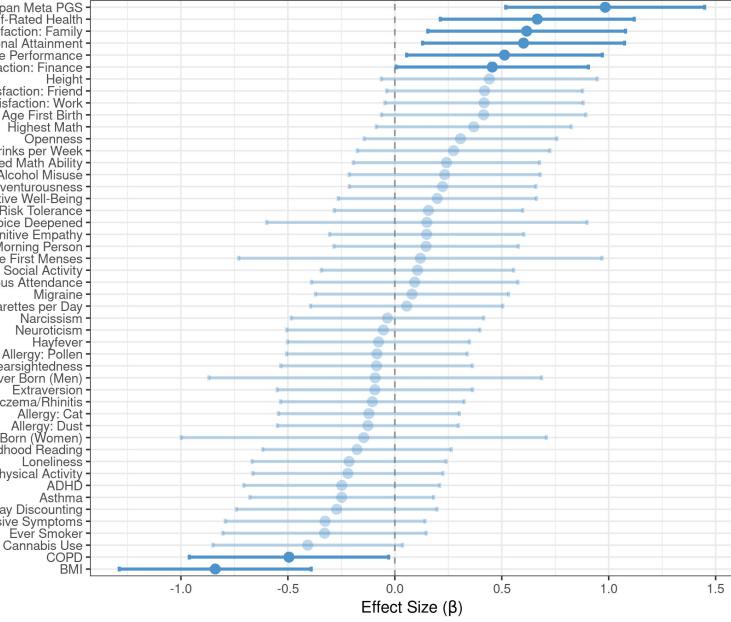


### Full 2x Genotype Sample

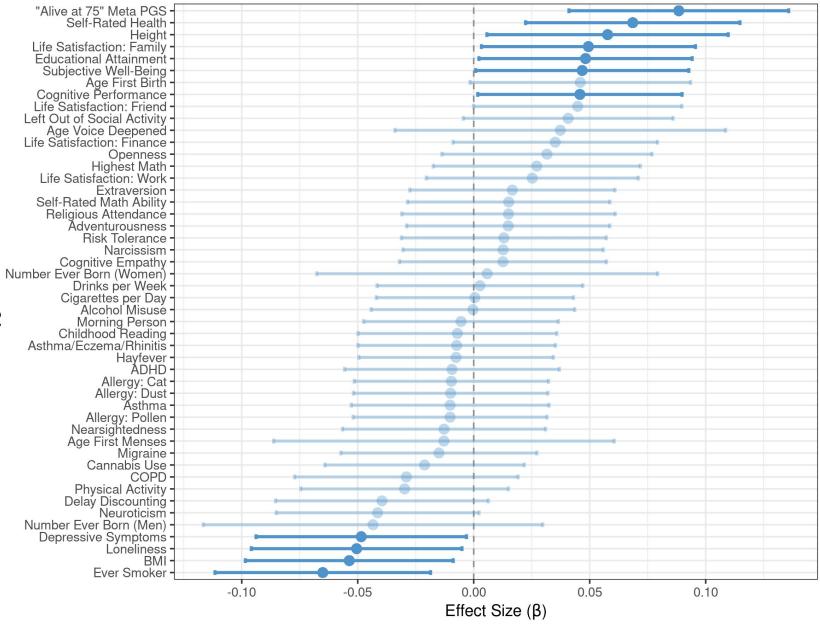




### Half 2x Genotype Sample





**Fixed Effects Estimate** 

### 1x Genotype Sample
















### Conclusion

- The Phenotype Differences model can increase power and external validity for the study of genetic effects
  - We need to collect more sibling phenotype data
- Twelve polygenic scores have statistically significant causal effects on mortality outcomes

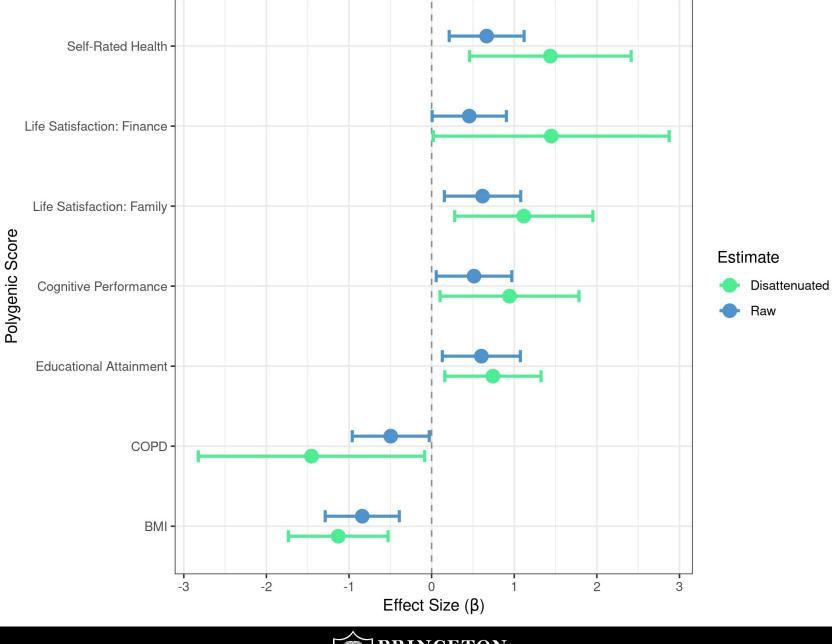


### Thanks!

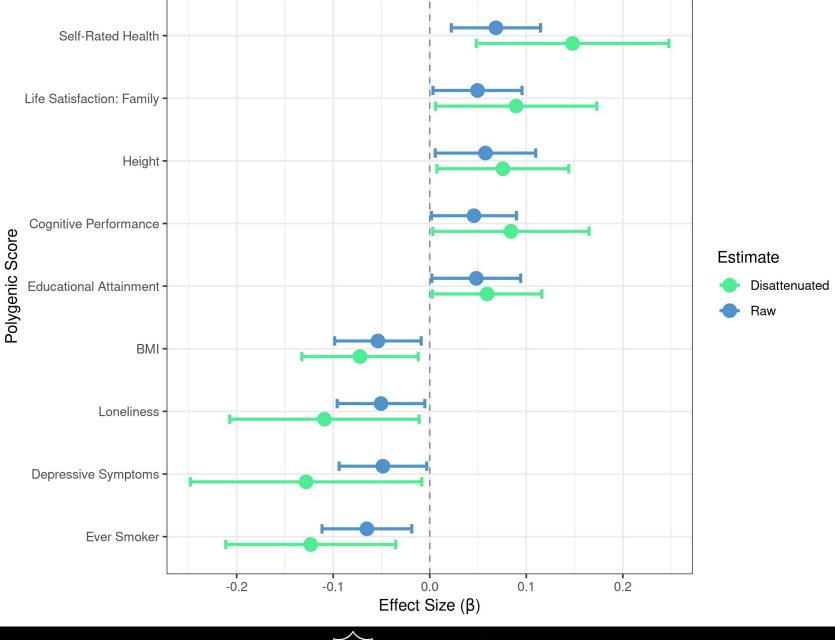
## www.samtrejo.com



### Fixed Effects


$$y_{ij} = \hat{\tau}_j + \hat{\beta}^{\mathsf{FE}} g_{ij} + \hat{\varepsilon}^*_{ij}$$

$$y_{ij} - ar{y_j} = \hat{eta}^{\mathsf{FE}}(g_{ij} - ar{g_j}) + \hat{arepsilon}_{ij}^*$$


### First Differences

$$y_{1j} - y_{2j} = \hat{eta}^{\mathsf{FE}}(g_{1j} - g_{2j}) + \hat{arepsilon}^*_{ij}$$

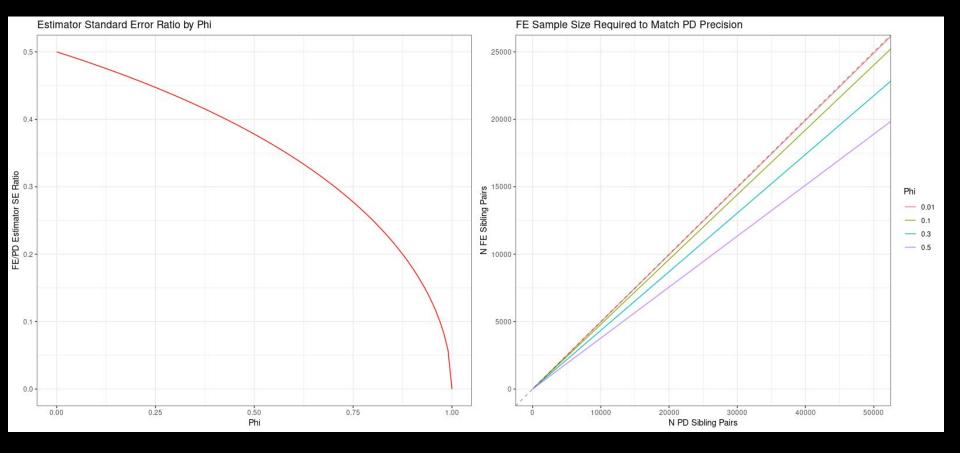











|                        | Geno | typed | Not Genotyped |      | Ratio | P-value |
|------------------------|------|-------|---------------|------|-------|---------|
|                        | SD   | N     | SD            | N    |       |         |
| Body Mass Index        | 1.00 | 3483  | 0.98          | 1728 | 1.02  | 0.44    |
| Height                 | 0.93 | 3364  | 1.05          | 1038 | 0.89  | 0.20    |
| Cognitive Abiltiy      | 1.01 | 3485  | 1.05          | 2881 | 0.96  | 0.010   |
| Years of Schooling     | 1.06 | 3621  | 1.06          | 2432 | 0.99  | 0.73    |
| Age at First Birth     | 0.99 | 3320  | 1.03          | 1267 | 0.96  | 0.27    |
| Depressive Symptoms    | 0.97 | 3508  | 1.08          | 1822 | 0.89  | 0.010   |
| Extroversion           | 0.99 | 3517  | 1.03          | 1808 | 0.95  | 0.020   |
| Neuroticism            | 0.98 | 3516  | 1.03          | 1804 | 0.95  | 0.010   |
| Openness to Experience | 0.96 | 3514  | 0.99          | 1804 | 0.97  | 0.16    |
| Risk Tolerance         | 0.99 | 2527  | 1.05          | 335  | 0.95  | 0.060   |



| pgi_phys_act | pgi_bmi       | pgi_canna   | pgi_cig_day   | pgi_ever_smk | pgi_hg     |
|--------------|---------------|-------------|---------------|--------------|------------|
| 0.512        | 0.500         | 0.493       | 0.459         | 0.543        | 0.620      |
| (0.019)      | (0.019)       | (0.019)     | (0.019)       | (0.018)      | (0.017)    |
| pgi_migrn    | pgi_chrono    | pgi_narci   | pgi_near_sgt  | pgi_open     | pgi_rea    |
| 0.487        | 0.508         | 0.505       | 0.493         | 0.543        | 0.504      |
| (0.019)      | (0.019)       | (0.019)     | (0.019)       | (0.018)      | (0.019)    |
| pgi_adhd     | pgi_adv       | pgi_birth   | pgi_cat       | pgi_dust     | pgi_polle  |
| 0.541        | 0.501         | 0.549       | 0.495         | 0.495        | 0.493      |
| (0.018)      | (0.019)       | (0.018)     | (0.019)       | (0.019)      | (0.019)    |
| pgi_aer      | pgi_asthma    | pgi_alch    | pgi_cog_emp   | pgi_copd     | pgi_co     |
| 0.501        | 0.502         | 0.504       | 0.524         | 0.564        | 0.497      |
| (0.019)      | (0.019)       | (0.019)     | (0.019)       | (0.018)      | (0.019)    |
| pgi_dly_disc | pgi_dep       | pgi_drinks  | pgi_edu       | pgi_extra    | pgi_sat_fi |
| 0.521        | 0.523         | 0.509       | 0.515         | 0.498        | 0.510      |
| (0.019)      | (0.019)       | (0.019)     | (0.019)       | (0.019)      | (0.019)    |
| pgi_sat_fam  | pgi_sat_frnd  | pgi_hay     | pgi_high_math | pgi_leftout  | pgi_lonel  |
| 0.536        | 0.531         | 0.486       | 0.506         | 0.535        | 0.537      |
| (0.018)      | (0.019)       | (0.019)     | (0.019)       | (0.018)      | (0.018)    |
| pgi_menses   | pgi_neb_male  | pgi_neb_fem | pgi_neuro     | pgi_relig    | pgi_ris    |
| 0.533        | 0.534         | 0.537       | 0.509         | 0.522        | 0.501      |
| (0.019)      | (0.019)       | (0.018)     | (0.019)       | (0.019)      | (0.019)    |
| pgi_health   | pgi_self_math | pgi_swb     | pgi_deep      | pgi_sat_job  |            |
| 0.548        | 0.507         | 0.539       | 0.522         | 0.531        |            |
| (0.018)      | (0.019)       | (0.018)     | (0.019)       | (0.019)      |            |

N=2088 Sibling Pairs









